TWG2 2019
Budapest

Inspections on pipelines 2005 – 2009
Peter Vansina
Ghislenghien - July 30th 2004

Natural gas pipeline ruptured followed by an explosion and fire

24 killed

132 injured
Accident summary

• Civil works had been carried out above a major natural gas pipeline using a ground stabilization machine.
• The pipeline was damaged, most likely by such a machine.
• The day of the accident, the pressure into the pipeline had been increased from 70 to 80 bar for process purposes. That caused the pipe to rupture.
• Most of the dead were police and fire-fighters responding to reports of a gas leak.
Inspection campaign on pipelines

• Scope:
 – External (transport) pipelines (near a Seveso site)
 – Internal (transport) pipelines and pressure reducing stations (inside a Seveso site)

• Inspection Topics
 – Identification of pipelines
 – Risk analyses
 – Technical and organizational measures
Campaign timeline

• 2005: first campaign (20 Seveso sites)
• 2008: information bulletin issued
 – ‘Recommendations for managing risks of pipelines’
• 2009: second campaign (17 Seveso sites)
• 2011: raising awareness via industry federations
 – Presentations
 – Checklist for self-evaluation by companies
• Some issues are covered during inspections on
 – Emergency planning
 – Inspection and maintenance
External pipelines

• Knowledge of pipelines near site (200 m)?
• Scenarios and possible impact
 – Overpressure, heat radiation?
 – Exchange info between pipeline operator and Seveso site?
• Contact points (emergency numbers, ...)?
• Rupture external pipeline covered in the internal emergency plan?
Internal pipelines & pressure reducing stations

- Exact location of underground pipelines?
- Above ground marking of internal underground pipelines?
Internal pipelines & pressure reducing stations

• Transition point internal (Seveso site) – external (pipeline operator)?
Internal pipelines & pressure reducing stations

• Shut off valves / isolation valves
 – Location (especially when underground)?
 – Operation of the valve?
 • By whom? (Seveso site? pipeline operator? both?)
 • Regularly tested? (sometimes stuck after long period of inactivity)
 • Special tools to operator valve available?
 – Accessible in case of emergency in the PRS?
 – Remotely operated shut off valve needed?
Internal pipelines & pressure reducing stations

• Risk analysis
 – Available?
 – Regularly updated?
 – Collaboration between Seveso site and pipeline distributor?

• Explosion risks
 – Classification of explosive atmospheres into zones?
 – Explosion protection document?
Internal pipelines & pressure reducing stations

• Technical issues
 – Gas detection in PRS Houses?
 – Pressure indicator between rupture disk and safety valve?
 – Safe location of pressure relief outlet to atmosphere?

• Technical documentation
 – Actual P&ID’s?
Internal pipelines & pressure reducing stations

• Inspection and maintenance
 – Pipeline and PRS covered by inspection program?
 • Piping
 • Pressure relief
 • Instrumental safety systems
 • Gas detection
 • Electrical installation ...
 – What is Seveso site supposed to inspect?
 – What is the pipeline operator supposed to inspect?
 – Exchange of info inspections between Seveso site and pipeline operator?
Internal pipelines & pressure reducing stations

• Work on or near pipelines
 – Subjected to permit to work system (e.g. digging)?
 – Notification of works near pipelines to pipeline operator (obligatory)?
 – Risks of heavy transport above underground pipelines?

• Work on pressure reducing station
 – Should pipeline operator personnel follow the permit to work system?
Internal pipelines & pressure reducing stations

• Emergency planning
 – Emergency numbers
 • Known?
 • Tested?
 – Simulation of incident during emergency exercises?
 – Response from pipeline distributor
 • Type of intervention that can be expected?
 • Intervention time?