



Webinar. Technical Working for Seveso Inspections (TWG 2)

"Ageing and Primary Containment Maintenance on Seveso and other Hazardous Sites"

EC-Joint Research Centre. 08/02/2022

# Analysis of accidents and good inspection practices for the management of ageing of industrial plants in Italy

#### Romualdo Marrazzo

Service for Risks and Environmental Sustainability of Technologies, Chemical Substances, Production Processes and Water Services and for Inspections (VAL-RTEC)

<u>ISPRA - Italian National Institute for Environmental Protection and Research</u>



# The role of ISPRA for industrial control

- ISPRA has a national role as a technical body supporting the Ministry of Environment in the national implementing of the Seveso Directives for the prevention of major accidents
  - Definition of technical contents of laws and decrees to control Major Accidents
  - Set-up of the National Inventory of major accident hazards establishments and other related data-bases
  - Inspections of upper-tier establishments SMS on regular basis or after an accident
  - Support for international activities (EU, OECD, bilateral cooperation)
  - Technical coordination and addressing of Regional Agencies for the Protection of Environment (ARPA)
  - Collaboration with other Authorities competent for industrial risk (Ministry of home affairs – National Fire Brigades; Department of civil protection; Ministry of infrastructures)





# Program and themes

- 1. Introduction
- 2. Industrial accidents and plant aging
- Italian law, national standards and guideline
- 4. An approach to good practices
- 5. The analysis of inspections
- 6. Conclusions





- Introduction and background
- Risks related to ageing

#### 1. Introduction





# Introduction and background

- The Italian implementation of the Seveso III directive (2012/18/EU) is the D.Lgs. 105/2015, aiming at the prevention of major accidents involving dangerous substances
  - Site Operators are obliged to take all necessary measures to prevent major accidents a/o limit their consequences for health and environment
  - Depending on the amount of dangerous substances present, establishments are categorized in lower and upper tier





# Control of the risks related to ageing

- As part of the implementation of the Safety Management System for Prevention of Major Accident (SMS-PMA), the D.Lgs. 105/2015 imposes
  - Monitoring and control of risks related to ageing of equipment and systems that can lead to loss of containment of hazardous substances, including the necessary corrective and preventive measures





- Ageing mechanisms as potential contributors
- Some national cases

# 2. Industrial accidents and plant aging



## Ageing mechanisms as potential contributors

- Main results of the analysis of some industrial accidents, which recently occurred on the national territory at "Seveso" establishments (refineries and chemical plants), identified
  - Mechanisms related to aging, as significant causes, both in technical and organizational terms





# Fire and explosions in piping

| Description                                                                                                                                                                                                                                                          | Causes                                                                                                                                       | Actions                                                                                        | Expected/Planned                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Release of crude oil from transfer pipe in the underpass of the road that crosses the plant, that developed a fire by accidental triggering which subsequently involved the adjacent piping belonging to different operators and then a series of explosions (Domino | Age (over 25 years) and state of preservation of the pipe in relation to the progressive corrosion phenomena, which led to the pipe drilling | Visual inspection and basic design of corrective actions. Necessary reconstruction activities. | Specific risk analysis. Planned and/or required compliances following Competent Authorities examination. Check of the pipeline inspection plan |
| Effect)                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                |                                                                                                                                                |



# Leakage through the tank bottom

| Description                                                                                                                                                | Causes                               | Actions                                                                        | Expected/Planned                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Leakage of oil through a large lesion at the bottom of a floating roof tank and subsequent release of the total amount of oil inside the containment basin | High corrosion and deteriorated area | Tank insulation. Transferring the product to another tank with temporary pipes | Tank out of service. Carrying out the remediation and maintenance of the basin and the tank. Double bottom insertion |











# Spill of sulphuric acid from a supply pipe in an underground channel

| Description                | Causes                       | Actions                   | Expected/Planned         |
|----------------------------|------------------------------|---------------------------|--------------------------|
| A <b>spill</b> occurred in | Advanced corrosion           | H2SO4 tank                | Scheduled                |
| the <b>buried channel</b>  | in a section of this         | emptied of the            | maintenance on           |
| housing the                | pipeline not                 | product.                  | H2SO4 tanks.             |
| pipeline connecting        | accessible to the            | Supply <b>lines</b>       | Monitoring of            |
| 6 storage tanks of         | controls.                    | intercepted and           | corrosion of these       |
| sulphuric acid. This       | It has been                  | further tank              | tanks and of the         |
| spill of <b>H2SO4 in</b>   | supposed a                   | isolated.                 | loading pipes, for       |
| the subsoil caused         | duration of the spill        | Monitoring and            | the calculation of       |
| the structural             | in the subsoil of            | verification of the       | the corrosion rate       |
| failure of one tank        | about <b>40 days</b> , for a | deformation of            | in the short and         |
| and the relative           | total of H2SO4               | structures.               | long term and of         |
| rotation of the            | spilled from the             | The <b>perimeter wall</b> | the <b>residual life</b> |
| base of the                | pipe equal to <b>about</b>   | of the containment        | (new procedure)          |
| containment <b>basin</b>   | 45 t                         | basin has been            |                          |
|                            |                              | reinforced, in order      |                          |
|                            |                              | to ensure the seal        |                          |
|                            |                              | of the basin itself       |                          |





#### Presence of diesel in piezometers near a storage tank

| Description                | Causes             | Actions                 | Expected/Planned         |
|----------------------------|--------------------|-------------------------|--------------------------|
| Following the              | Corrosion in the   | Construction of a       | Implementation of        |
| sampling at 2              | single bottom of   | draining trench         | the <b>double bottom</b> |
| piezometers,               | the tank, although | north of the tank       | on all tanks of          |
| located near a             | this had been      | and commissioning       | hydrocarbon              |
| storage tank               | subject to         | of <b>new</b>           | products, with           |
| containing diesel,         | maintenance work   | piezometers.            | viscosity lower than     |
| the presence of a          | on the bottom in   | Update of the           | 12 ° E at 50 ° C, with   |
| supernatant                | the previous 2     | operational             | a single bottom.         |
| hydrocarbon                | years (application | <b>protocol</b> for the | Review of the aging      |
| product of the             | and welding of     | hydro-chemical and      | management               |
| same type in the           | overlapping sheets | piezo-metric            | program of the           |
| tank was found.            | on the existing    | monitoring of           | tanks                    |
| Spill of about <b>1000</b> | bottom)            | groundwater             |                          |
| cubic meters of            |                    |                         |                          |
| diesel in the              |                    |                         |                          |
| subsoil, following a       |                    |                         |                          |
| leak from a storage        |                    |                         |                          |
| tank                       |                    |                         |                          |





- National and technical standards
- Supporting for ageing evaluation

# 3. Italian law, national standards and guideline





#### National and technical standards

- Tools for the implementation of an effective SMS (UNI 10617, 10616, 10672, 1226)
  - "State of the art" in the D.Lgs. 105/2015 and meet the requirements of the law and the ISO standards
- Technical standards, specific for pressure equipment (UNI/TS 11325-8, 11325-9)
- Risk Based Inspection (RBI) and Fitness For Service (FFS) methodologies
  - A targeted planning of maintenance operations and accurate monitoring





# Supporting for ageing evaluation

- Development of a method for a base evaluation of the adequacy of ageing consideration in the frame of the asset integrity management
  - It is useful for site managers (qualitative assessment) and for inspectors (evaluation of the implementation)
  - Role of Public Administration in addressing the control of risks associated with aging



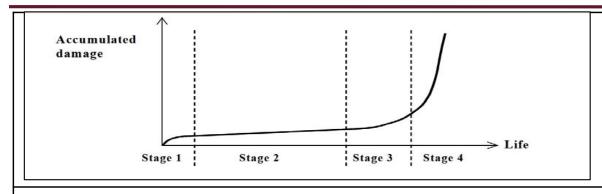




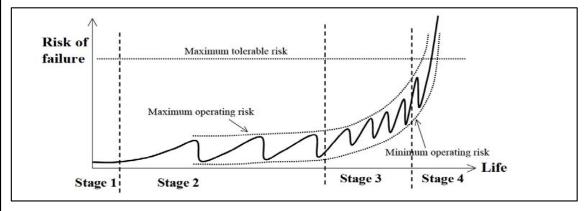
- Implementation of maintenance standards
- Influence of ageing on equipment
- Ageing and methodologies
- The primary containment system

## 4. An approach to good practices

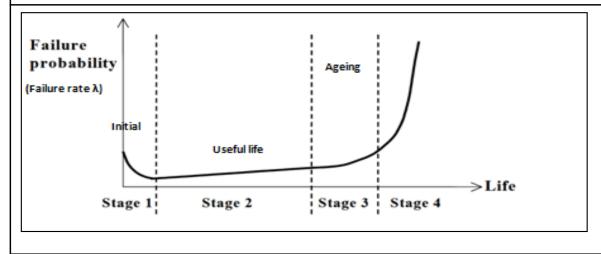



### Implementation of maintenance standards

- Preventive, scheduled, or corrective maintenance of critical equipment or lines may be performed in accordance with the Risk Based Maintenance (RBM) Policies/Practices
  - They shall minimize the risk of loss of functionality
- Ageing is not strictly related to the age of the equipment, but to its changes over time
  - It can lead to significant deterioration and/or damage to initial conditions, compromising functionality, availability, reliability and safety







# Influence of ageing on equipment



Variation of accumulated **damage during the service** 



Effect of **periodic maintenance** on the risk of failure, varying **between tolerable risk and operating risk** 



Model for the probability of failure of a population of equipment: the "bathtub curve" shows the typical four stages of the progressive ageing





#### Ageing and methodologies

- It is possible to schedule a targeted maintenanceplanning, based on the RBI method, which consists of specific inspection activities according to the actual operating conditions of the equipment
- Through the FFS method you can continue to maintain in operation, with accurate monitoring, equipment that has a structural degradation
- In addition, the "Management of Changes" is crucial
  - It is important to keep records of the operating history and problems encountered during the life





# The primary containment system

- A possible approach to ensure mechanical integrity
  - i. Defining the degradation mechanisms
    - ✓ Corrosion / Mechanisms not related to corrosion
  - ii. Defining and personalizing inspection technologies
    - ✓ Liquid penetrant testing / Magneto-scope test / Vacuum box test / Ultrasonic (long range) / Spark test / Acoustic Emissions
  - iii. Determining the frequency of inspections
    - ✓ Construction / Repair techniques and materials / Stored product / Previous inspection / Corrosion rates / Corrosion prevention systems / Potential contamination / Double bottoms or other systems / Leak detection systems with operating tanks





Non-compliances found on SMS

# 5. The analysis of inspections





# Non-compliances found on SMS

- The main findings of the inspections on the SMS, conducted in the last three years in Italy
  - Critical issues emerged regarding the aging and asset integrity problems of industrial installations
    - ✓ Need to consider and analyze the problems of ageing (corrosion, erosion, fatigue) of equipment (no procedure)
    - √ No evidence of a plan for monitoring the ageing, unless it is in accordance with law obligations
    - ✓ Developed a well-structured Asset Integrity Management procedure, but partially implemented (no evidence)
    - ✓ Lack of a specific procedure containing: Analysis of degradation mechanisms; A fixed-term monitoring plan; Preventative and corrective actions





• Risks of plant ageing and SMS implementation

#### 6. Conclusions





#### Risks of plant ageing and SMS implementation

- Plants are subject to degradation phenomena and the effects of operational changes
  - It is useful to know the performance decay rates to plan adequate maintenance activities, and to identify the most suitable NDTs for assessing the damage
- The correct implementation of the SMS plays a considerable role, in order to ensure safe operational continuity of equipment
  - The RBI and FFS methodologies can constitute a valid response in the management of asset integrity issues and its correlation with aging phenomena





Questions...???...

romualdo.marrazzo@isprambiente.it

#### Thanks for the attention!