

Hydrogen Fuel Risks

Aleš Bernatík, Vojtěch Jankůj, Atef Mahmoud

Introduction

VSB TECHNICALFACULTYDEPARTMENTUNIVERSITYOF SAFETYOF OCCUPATIONALOF OSTRAVAENGINEERINGAND PROCESS SAFETY

Introduction

- Hydrogen is presented as the future source of energy because of its high energy potential and clean combustion.
- > Energy released almost 3 times more than gasoline.
- Flame almost invisible with naked eye during daylight.
- Hydrogen has a broad flammability rate from 4% to 75%

Hydrogen technologies are expected to be used widely for smart cities or regions

The Czech Republic's Hydrogen Strategy

- European Climate Law 2021: sets out a binding objective of climate neutrality including net-zero greenhouse gas emissions in the EU by 2050.
- Ministry of Industry and Trade has developed Hydrogen Strategy to step forward to implement European Climate Law
- Czech government in 2021 has approved the strategy in same year.

The Czech Republic's Hydrogen Strategy

- Covers the proposed application of Hydrogen in different industrial sectors.
- Consists of 4 main sections:
 - > Analytical section,
 - Strategic section,
 - Implementation section,
 - Strategy development process.

YDROGEN SAFETY CONCEPT HySaCo

The Czech Republic's Hydrogen Strategy

- Implementation section: Sequential steps by area of hydrogen use in different sectors
 - Transport (mobility) sector,
 - Chemical industry sector,
 - Iron and steel sector,
 - Electricity and heat production.

Czech Hydrogen Technology Platform

- Ministry of Industry and Trade considered as the relevant authority.
- Take the initiation to link the cooperation between academia and business sectors
- Czech Hydrogen Technology Platform since 2007. <u>https://www.hytep.cz</u>

Czech Hydrogen Technology Platform

- here over 70 members including
 - Technical University of Ostrava VSB-TUO,
 - Czech Technical University,
 - University of Chemistry and Technology,
 - České dráhy (Czech Railways),
 - Škoda Electric.

Czech Hydrogen Technology Platform

YDROGEN SAFETY CONCEPT HySaCo

Hydrogen filling station in Czech Republic

- First public since 2022 in Vítkovice, Ostrava
- Capacity is to fill up to 40 hydrogen cars., so far about 10 cars per day are expected to be filled.
- Took 2 months to complete the project, the Cost was 600,000 Euros.
- Based on <u>https://h2.live/en/</u>, 2 stations in service, and 4 stations are under construction.

Hydrogen filling station in Czech Republic

- Trial operation is planned for 2025, and start fullscale operation of the station in 2026.
- Close to VSB-TUO campus to ensure connection between research activities and public accessibility.
- Production, compression, storage and distribution of 100-150 kg of green hydrogen/day.
- Charging up to 10 electric cars at the same time and 1 quick-charging station for electric buses.

Risk Analysis Case Study

Ecological filling station for vehicles with an alternative energy source

• Personal cars, public buses

Production Storage Use

 Dangerous substance -Hydrogen

Risk analysis according to Major accident Prevention (SEVESO Directive)

Dangerous zones (fire, explosion)

Technology

YDROGEN

CONCEPT

Identification of sources of risks

Combination of countryside and built – up area

Dangerous substance – hydrogen

- Storage stack
- Pipelines
- Filling stand

Dangerous substance in the subject

Label of risk source	Facility	Dangerous substanvce, clasification	Quantity [Kg]	Physical form
Z1	High pressure storage H ₂	Hydrogen – H220, H280	350	Compressed gas
Z2	Low pressure storage H ₂	Hydrogen – H220, H280	100	Compressed gas

Risk analysis – identification of possible accidents

Possible situation inside the object

- Leakage of flammable gas, subsequent fire or explosion
 - Scenario: Continuous hydrogen leakage from the high pressure storage, dispersion to surrounding, potential ignition and fire / explosion

Possible situation outside the object

- Human activity
- Natural effects

Systematic identification of causes and initiation event

Identification of representative scenario – cause description

- High-pressure storage app. 300 kg of hydrogen
 - Hydrogen release / leakage loss of tightness of storage or pipelines
 - Scenario rupture in average 1 cm (Purple Book)

VSB	TECHNICAL	FACULTY	DEPARTMENT
կլե	UNIVERSITY	OF SAFETY	OF OCCUPATIONAL
	OF OSTRAVA	ENGINEERING	AND PROCESS SAFETY

ALOHA results

Scenario	Substance	Rupture [cm]	Amount [kg]	Max. of releasing amount [kg/min]	Leakage time [min]	Threat level	Accident range [m]
Fire	Hydrogen	1	260	122	23	10 kW/m ²	14
Explosion	Hydrogen	1	260	95	23	55 kPa	62

Overall evaluation of the object risk

Based on the risk analysis the precautions are sufficient

Effectively separate amount of the hazardous substances in technologies

 Smaller parts, remote control valves (low / high pressure systems)

Hazardous substances leakage detection

• Hydrogen leakage detection, automatically close of valves, total stop

Systematically increasing employee knowledge level

• source of the risk, emergency scenario training

HYdrogen SAfety COncept - HySaCo

Open call in safety research for 2023-2029

Safety Concept of Hydrogen Technologies for Smart Cities and Regions

Project leader: prof. Dr. Ing. Aleš Bernatík (FBI)

Project manager: Ing. Vojtěch Jankůj, Ph.D. (FBI)

Project partner: Ing. Adam Giurg, Ph.D. (UniCRE)

Project period: 1.1.2023 – 31.12.2026

The aim of the Project

Risk management in the hydrogen life cycle with focusing on the so-called hydrogen valleys or hydrogen cities

Theoretical background of hydrogen technologies and their use

Practical obtained and evaluated data which will be used for scenarios

DROGEN

CONCEPT

Conclusion

Thank you for your attention

Atef Mahmoud

atef.mahmoud@vsb.cz

www.vsb.cz