1 - MAHB - Common Inspection Criteria:

‘Maintenance of Primary Containment Systems’

2 - New book from the Center for Chemical Process Safety (CCPS):

‘Dealing with Aging Process Facilities and Infrastructure’

Charles Cowley
MAHB Rapporteur – MJV Malta 2019
Independent Consultant (ex Shell)
CCPS Staff Consultant, London
3) Mechanical integrity

- Mechanical integrity is still a main cause of concern
 Examples: UK, Italy, SMEs

- Risk assessments and risk-based decisions are often constructed on false assumptions about mechanical integrity

- Failure to recognise mechanical vulnerabilities has an enormous impact on the safety of the entire process

- Many accident scenarios feature mechanical integrity as the critical factor, or “weak link” in process safety

“Mechanical integrity may be an old issue, but it remains possibly the most fundamental principle of chemical process risk management”
CIC: Maintenance of Primary Containment Systems

Malta MJV 10-12 April 2019

Screenshot of MAHB Publications web page

DEFINITION AND SCOPE

In this document, the term “Pressure Relief Systems” is defined as a combination of:

- One or more pressure relief devices (PRD)
- The inlet piping, i.e., the piping from the protected vessel to the inlet of the pressure relief device
- The outlet or discharge piping, i.e., the piping from the outlet of the pressure relief device to the atmospheric venting point, the flare, the blow down tank or any other system designed to handle the relief flow

Pressure relief devices protect a vessel against overpressure. A pressure relief device can be a pressure relief valve or a rupture disk.

A pressure relief valve is designed to automatically reclose and prevent the flow of fluid when pressure has dropped below the set pressure. There are various types of pressure relief valves: spring-loaded pressure relief valves, safety (relief) valves, balanced pressure relief valves, Globe-seated pressure relief valves, pressure-relief device actuated by inlet static pressure and designed to function by bursting the rupture disk that is installed in a rupture disk holder. The rupture disk device includes the rupture disk and rupture disk holder.

A pressure relief system may consist of one or more pressure relief devices and associated equipment, including control systems, instrumentation, piping, or other systems of piping that are designed to route displaced or vented fluid from the affected system or process to a safe disposal area.
CIC: Maintenance of Primary Containment Systems

Purpose

Provides guidance to inspectors on assessing the adequacy of the arrangements made by operators of Seveso III establishments for maintaining primary containment systems:

- the technical and organisational measures
 - described in the Major Accident Prevention Policy (in the Safety Report of upper tier operators)
- the implementation of these technical and organisational measures
 - through the operator’s Safety Management System (SMS) of upper tier operators
 - and through appropriate means, structures and management systems, proportionate to major-accident hazards, for lower tier operators

It provides a framework for inspection and a means to assess an operator’s performance using defined success criteria
CIC - MAINTENANCE OF PRIMARY CONTAINMENT SYSTEMS
FINAL DRAFT – Sep 2018

Scope (non-exhaustive list):

- Pressure vessels (including Heat Exchangers, Columns Reactors, Fired Heaters etc)
- Atmospheric storage tanks
- Rotating equipment (pumps, compressors, turbines etc)
- Valves
- Piping systems (pipe, fittings, flanges, supports etc)
- Pipelines inside the Installation (above ground or buried)
- Technology-specific containment systems: eg Driers; Filters; Condensers; Cooling Towers; Refrigeration systems, Powder Handling Systems; Underground Storage; Cryogenic Storage Vessels; Oil & Gas Wells, Wellheads, Flowlines; Mine Tailings Disposal Ponds; Dams
- Supporting structures for the above

NOT in Scope (though important not to overlook...):

- Instruments, Control Systems, Alarms & Automatic Shutdown Systems associated with the above, including sensors, process connections, transmitters, tubing & fittings, cabling systems etc (REFER TO CIC ON INSTRUMENT SYSTEMS)
- Relief systems (Pressure Relief Valves, vent and flare systems) (REFER TO CIC ON RELIEF SYSTEMS)
CIC: Maintenance of Primary Containment Systems

CIC - MAINTENANCE OF PRIMARY CONTAINMENT SYSTEMS FINAL DRAFT – Sep 2018

Some particular known weaknesses:

• Small bore piping and instrument tubing
• Pump seals
• Bolted joints / flanges
• Corrosion Under Insulation (CUI) and corrosion under pipe supports
• High process temperatures, aggressive chemicals or high cycling rates (temperature or pressure)
• Obsolescence of Electrical, Controls & Instrumentation (EC&I) equipment
• Equipment items which are difficult to access
• Newly installed equipment
• Auxiliary items not directly involved in production such as:
 • Secondary / back-up pumps
 • ESD systems
 • Calibration of alarms and trips
• Temporary and experimental equipment
• Responsibility for shared plant such as internal connecting pipelines within an installation
Barrier-based approach – the left hand side of the Bow tie

Preventive barrier types:
- passive or active
- Hardware
- Human or
- Combined hardware and human
The Role of Inspections
...is to verify the adequacy of Technical Measures and Organisational Measures

A) Technical Measures

1. Justification and reasoning behind maintenance programs
 e.g. balance of preventive and reactive maintenance; frequency and scope of maintenance interventions

2. Arrangements for periodic examination and assessment of Safety-Critical Elements

3. Competence of maintenance staff

4. Safe systems of work, integrating Human Factors good practice

The Operator is expected to describe the above in the Safety Report / MAPP and provide full details within their management system
Expectations: 1 - Justification and reasoning behind maintenance programs

- **An Asset Register** – listing all Safety Critical Elements (SCEs)

- **The Degradation Mechanisms** identified as credible for each SCE eg:
 - Corrosion; Erosion; Fatigue; Stress-corrosion; Creep; Embrittlement, Settlement;
 - Seismic; Physical impact; Over-stress; UV damage
 - Instrument drift; software failures

- **Justification for each SCE remaining in service**

- **Preventive Maintenance plans**
 - Defined interventions and intervals for each SCE based on:
 - Regulations; Industry standards; Manufacturers’ instructions
 - Degradation data and trend analysis from records of Operator’s Inspection, Reactive Maintenance and Condition Monitoring Systems

- **Quality management of maintenance work**

- **Records of all Preventive and Reactive Maintenance** for each SCE

- **Records of other maintenance-related issues**
Expectations: 2 - Arrangements for the periodic examination and assessment of SCEs

- **A periodic examination and assessment plan and records all SCEs**, based on
 - The Asset Register
 - Degradation mechanisms and rates (as determined in ‘Expectations 1’)
 - The principles of **Risk Based Inspection**

- **Inspection intervals**
 - to confirm that **minimum Performance Criteria** are met
 - based on the expected rate of degradation and the actual condition when last inspected

- **A process for and records of inspecting a SCE** and re-verifying its technical integrity if its Operating Limits have been exceeded beyond predefined values

- **Records of all examination and assessment of each SCE:**
 - Date, examination done and results
 - Historical trend analysis to identify degradation mechanisms and rates
Expectations: 3 - Competence of maintenance staff – including contractor personnel

- **Defined roles, responsibilities, accountability, authority and interrelation** of all people involved in maintenance and inspection of primary containment systems, based on an analysis of the safety-critical tasks.

- **Defined competences required** of all the above people, based on:
 - responsibilities
 - specific tasks and procedures
 - specific equipment worked on

- **Records of competence** assessments, including:
 - knowledge and proficiency tests
 - currency / recency of performing specific tasks
 - gaps and actions taken to address gaps (e.g. training, experience, supervision, support)
Expectations: 4 - Safe systems of work, integrating Human Factors good practice

- **Safe working practices and procedures that:**
 - incorporate Human Factors good practice
 - Include work instructions and checklists etc.
 - are clear and easily accessible

- **and that cover the following:**
 - All tasks of maintenance and periodic examination and assessment
 - Supervision of contractors
 - Permit To Work
 - Isolation and making safe for maintenance and activities
 - Management of overrides
 - Communication within and between shifts, including handover
 - Fitness to work, including Fatigue management
The Role of Inspections
...is to verify the adequacy of Technical Measures and Organisational Measures

B) Organisational Measures - EXPECTATIONS:

• Clear overall responsibility for Asset Integrity of the Establishment (a named ‘Asset Manager’)
• A process and criteria for determining the Safety Critical Elements
• A process for incorporating plant changes, including changes in operating conditions, into the maintenance management system
• Segregation of reporting lines and authorities within Operator’s management structure:
 o between ‘Operations & Maintenance’ and ‘Operator’s Inspection’ / Integrity Tech Auth’s
• Direct access of Operator’s Inspection staff and Technical Authorities to the Asset Manager
• Use of ‘Statement of Fitness’ issued by Asset Manager
• Regular frequent audit of Asset Integrity by the Operator
• Management review of the effectiveness of maintenance management
• Prioritisation and management of corrective actions
• Metrics
References

1. Managing Ageing Plant - A Summary Guide Pub HSE
2. British HSE Guidance on COMAH Regulations; Regulation 8 – Safety Reports
3. COMAH Competent Authority Ageing Plant Operational Delivery Guide
4. HSEG250 - Guidance on permit-to-work systems
5. Best practice for risk based inspection HSE CRR 363/2001
8. Energy Institute Human and Organisational Factors Guidance
9. HSE Guidance on Human Factors
Ageing ... or Asset Integrity?

STANDARD ASSET INTEGRITY MANAGEMENT

Design Integrity
Technical Integrity
Operating Integrity

Integrity Leadership

Design Codes; Construction QC; ...Records

Inspection and Maintenance ...Records

Stay within Design Operating Limits – Temp; Pressure etc. Report excursions... and manage! ...Records
NEW CCPS Book – Published April 2018

Available [here](#) as Hardback or E-book
Book Project Team

The members of the CCPS project subcommittee were:

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Freiburger</td>
<td>Praxair, subcommittee chair</td>
</tr>
<tr>
<td>Brian Kelly</td>
<td>CCPS staff consultant</td>
</tr>
<tr>
<td>Laura Bellman</td>
<td>Covestro</td>
</tr>
<tr>
<td>Larry Bowler</td>
<td>SABIC</td>
</tr>
<tr>
<td>Bill Callaghan</td>
<td>Nova Chemicals</td>
</tr>
<tr>
<td>Derin Adebekun</td>
<td>Air Products</td>
</tr>
<tr>
<td>Susan Lubell</td>
<td>Nexen Energy</td>
</tr>
<tr>
<td>Bennie Barnes</td>
<td>Pacific Gas and Electric</td>
</tr>
<tr>
<td>Jonas Duarte</td>
<td>Chemtura</td>
</tr>
<tr>
<td>Reyyan Koc</td>
<td>ExxonMobil Chemical</td>
</tr>
<tr>
<td>John Murphy</td>
<td>CCPS emeritus</td>
</tr>
<tr>
<td>Jatin Shah</td>
<td>BakerRisk</td>
</tr>
<tr>
<td>Ken Tague</td>
<td>Archer Daniels Midland</td>
</tr>
<tr>
<td>Sudhir Phakey</td>
<td>Linde</td>
</tr>
<tr>
<td>Nancy Faulk</td>
<td>Siemens Energy</td>
</tr>
<tr>
<td>Tom Sandbrook</td>
<td>Chemours</td>
</tr>
<tr>
<td>Robb Van Sickle</td>
<td>Flint Hills Resources</td>
</tr>
<tr>
<td>Terry White</td>
<td>Pacific Gas and Electric</td>
</tr>
<tr>
<td>Bob Wasileski</td>
<td>formerly Nova Chemicals</td>
</tr>
</tbody>
</table>

Peer Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Bartlett</td>
<td>Pareto Engineering & Management Consulting</td>
</tr>
<tr>
<td>Andrew Basler</td>
<td>Mallinckrodt Pharmaceuticals</td>
</tr>
<tr>
<td>Michael Broadribb</td>
<td>BakerRisk</td>
</tr>
<tr>
<td>Mark Jackson</td>
<td>FM Global</td>
</tr>
<tr>
<td>Morteza Jafari</td>
<td>ABS Group Consulting (USA)</td>
</tr>
<tr>
<td>Pamela Nelson</td>
<td>Solvay</td>
</tr>
<tr>
<td>Chad Patschke</td>
<td>Ethos Mechanical Integrity Solutions</td>
</tr>
<tr>
<td>Perianan Radhakrishnan</td>
<td>Petrochemical Corporation of Singapore</td>
</tr>
<tr>
<td>M.S. Rajendran</td>
<td>ABS Group Consulting (Singapore)</td>
</tr>
<tr>
<td>Darrell Wadden</td>
<td>Nova Chemicals Ltd.</td>
</tr>
<tr>
<td>Dan Wilczynski</td>
<td>Marathon Petroleum Company</td>
</tr>
<tr>
<td>Della Wong</td>
<td>Canadian Natural Resources Ltd.</td>
</tr>
</tbody>
</table>
CONTENTS

1. Introduction

2. Aging Equipment Failures, Causes and Consequences

3. Plant Management Commitment and Responsibility

4. Risk Based Decisions

5. Managing Process Equipment and Infrastructure Lifecycle

7. Specific Aging Asset Integrity Management Practices

8. Decommissioning, Dismantlement and Removal of Redundant Equipment

9. Onward and beyond

Acronyms

References

Appendix A: Aging Asset Case Studies
Risk Based Decisions

4. Risk Based Decisions

4.1 Risk Management Basics

4.1.1 Risk Ranking

4.1.2 Risk Mitigation Controls

4.2 Risk Based Decisions

4.2.1 When to Apply Risk Based Decisions

4.3 How to Apply Risked Based Decisions

4.3.1 Determine Hazard Scenarios

4.3.2 Assess Consequences

4.3.3 Assess Likelihood

4.3.4 Determine Risk

4.3.5 Develop Risk Mitigation Controls

4.3.6 Implement Risk Controls

4.3.7 Information Required for Risk Based Decisions

4.3.8 Documentation of Risk Based Decisions

4.4 Embracing Risk Based Management

4.4.1 Alignment of Management and Operations with Risk Based Decisions

4.4.2 Incorporate Corporate Responsibility and Economic Value

4.5 Dealing with Unexpected Events

4.6 Risk Based Decisions Success Metrics

51
51
53
55
55
57
57
60
60
61
61
61
60
62
63
63
64
65
65
65
66
67
Managing Lifecycle

5. Managing Process Equipment and Infrastructure Lifecycle69
 5.1 Lifecycle Stages..69
 5.2 Asset Lifecycle Management...69
 5.2.1 Management Strategy Development70
 5.2.2 Organizational Design ...70
 5.2.3 Long-Term Asset Planning ..72
 5.3 General Topics...72
 5.3.1 Manage by Operational Integrity72
 5.3.2 Managing Change During Lifecycle....................................73
 5.3.3 Orphaned Assets ...76
 5.3.4 Disrepair of Assets ..76
 5.3.5 Extending Lifecycle with Rebuilt Equipment77
 5.3.6 Managing Used or Refurbished Equipment78
 5.3.7 Mothballing and Re-commissioning of Aged Assets79
 5.3.8 Partial Upgrades to Older Facilities and Equipment80
 5.4 Predicting Asset Service Life ...80
 5.4.1 Mean Life and Age ...80
 5.4.2 Assessing End-of-Life Failure Probability81
 5.4.3 Aging Process and Maintenance ...84
 5.5 Infrastructure Specific Topics..85
Inspection and Maintenance Practices

 6.1 Inspection and Maintenance Goals.. 88
 6.1.1 Vision.. 88
 6.1.2 Inspection and Maintenance Commitment for Expected Lifecycle of Equipment.. 88
 6.1.3 Implementation of Formal Comprehensive Inspection, Testing and Preventive Maintenance Program.. 88
 6.1.4 Need Justifiable Inspection and Maintenance Practices........ 89
 6.1.5 Managing Aging Asset Strategies....................................... 89
 6.2 Inspection and Maintenance Program Elements............................ 91
 6.2.1 Maintenance Program... 94
 6.2.2 Inspection Program ... 99
 6.3 Inspection and Maintenance Program Resources......................... 102
 6.3.1 Human Resources... 102
 6.4 Addressing Infrastructure Deficiencies.................................. 104
 6.4.1 Inspection Follow-up... 105
Asset Type-Specific Management Practices

7. Specific Aging Asset Integrity Management Practices

7.1 Structural Assets
 7.1.1 Structure Foundations
 7.1.2 Support Structures
 7.1.3 Piping Systems, Pipe Racks and Overpass Information
 7.1.4 Buildings
 7.1.5 Inspection and Maintenance RAGAGEPs

7.2 Electrical Distribution and Controls
 7.2.1 Electrical System
 7.2.2 Control System

7.3 Earthworks: Roads, Impoundments, and Railways
 7.3.1 Roads
 7.3.2 Earthworks Infrastructure: Trenches, Dikes and Storage Ponds
 7.3.3 Railways and Spurs

7.4 Marine Facilities: Terminals and Jetties
 7.4.1 Marine Facilities Information
 7.4.2 Marine Facility Inspection
 7.4.3 Marine Facilities Aging Warning Signs

7.5 Underground Utility Systems
 7.5.1 Electric Cables
 7.5.2 Utility Underground Piping: Fuel Gas, Cooling Water, Fire Water, Drains and Sewers
Decommissioning and Disposal

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Decommissioning, Dismantlement and Removal of Redundant Equipment</td>
<td>157</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>8.2 Equipment Hazards</td>
<td>158</td>
</tr>
<tr>
<td>8.2.1 Unknown or Undocumented Condition</td>
<td>158</td>
</tr>
<tr>
<td>8.2.2 Dismantling Residual Chemical Hazards</td>
<td>158</td>
</tr>
<tr>
<td>8.2.3 Custody After Removal</td>
<td>160</td>
</tr>
<tr>
<td>8.3 Final Decommissioning Practices</td>
<td>160</td>
</tr>
<tr>
<td>8.3.1 Cleaning</td>
<td>160</td>
</tr>
<tr>
<td>8.3.2 Retaining Spare Equipment and Parts</td>
<td>161</td>
</tr>
<tr>
<td>8.3.3 Disposal of Chemicals</td>
<td>161</td>
</tr>
<tr>
<td>8.4 Dismantling and Disposal</td>
<td>162</td>
</tr>
<tr>
<td>8.4.1 Degassing</td>
<td>162</td>
</tr>
<tr>
<td>8.4.2 Inerting</td>
<td>162</td>
</tr>
<tr>
<td>8.4.3 Removal from Operating Facilities</td>
<td>163</td>
</tr>
<tr>
<td>8.4.4 Site Cleanup</td>
<td>163</td>
</tr>
<tr>
<td>8.4.5 Scrap Value</td>
<td>165</td>
</tr>
</tbody>
</table>
Case Studies

Appendix A: Aging Asset Case Studies

Case Study 1: Gas Distribution Pipeline Explosion
Case Study 2: Mississippi Bridge Collapse
Case Study 3: Sinking Building Foundation
Case Study 4: Tailings Dam Failure
Case Study 5: Sinking of the Betelgeuse
Case Study 6: Alexander Kielland Drilling Rig Disaster
Case Study 7: Roof Collapse at Ore Processing Facility
CIC - MAINTENANCE OF PRIMARY CONTAINMENT SYSTEMS
FINAL DRAFT – Sep 2018

Purpose

Provides guidance to inspectors on assessing the adequacy of the arrangements made by operators of Seveso III establishments for maintaining primary containment systems:

- technical and organisational measures
- implementation of these measures

It provides a framework for inspection and a means to assess an operator’s performance using defined success criteria

NEW CCPS Book
– Published April 2018

Available here as Hardback or E-book

In summary…